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Abstract

A new noniterative method, for determining the dielectric, piezoelectric and elastic constants, in complex form, for piezoceramic materials, in the

radial mode, was proposed.

This method uses the standard procedure to determine the elastic compliance and Poisson factor and the measurement of admittance at two
frequencies to calculate the dielectric and piezoelectric constants, by solving a system of two equations.

The accuracy of the new method was determined for materials with different planar coupling coefficients (k, = 2.5-57%) and mechanical quality
factors (Q,, =20-3000). This method proved to be very accurate for all materials especially for those with large coupling factors. The accuracy of

standard method was also evaluated for the same materials.
© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

The standard method! used to determine the dielectric, piezo-
electric and elastic constants of piezoelectric ceramics, in the
radial mode, ignores their losses, considering these constants as
real quantities. However, the development of impedance spec-
troscopy performed with impedance analyzers, provides the
spectra of the real and imaginary parts of electrical admittance,
which can only be explained by taking into account the losses and
treating the material constants as complex quantities. The meth-
ods used to determine material constants, in complex form, can
be classified as iterative>* and noniterative.’ The iterative ones
use the frequency spectra of the electrical admittance, within the
range of the resonance—antiresonance of the fundamental mode
only, to determine all material constants, while the noniterative
method requires some more measurements, away from funda-
mental resonance, and a set of specific frequencies, in the range
of fundamental mode and the first overtone. For radial mode, the
noniterative method is valid only for materials with intermedi-
ate mechanical quality factors.® Iterative methods can be used
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even for materials with high losses, but they need a judicious
choice of the frequencies where admittance is measured. These
frequencies have to be calculated before?* or during the iteration
process® which is a drawback of these methods. In this later case,
measurement of new admittance data at calculated frequencies is
required, hence data acquisition and iteration process cannot be
separated. Despite their high accuracy,” iterative methods have
another drawback. They require the measurement of the admit-
tance at series resonance frequency, which is performed with
large errors for the imaginary part, mostly for materials with
high coupling factors.

Recently, a new method for determining material constants in
complex form by curve fitting approach has been reported.® The
fitting approach of the whole admittance spectra was performed
by a nonlinear iteration method, in the series resonance band,
and the resulting constants were compared to those provided
by standard method. A significant mismatch between the two
methods was observed for materials with high coupling factors.
This method is rather difficult to be applied since it uses some
complicated expressions for linearization of the admittance and
for solving the systems of equations for the initial guess of the
dielectric and piezoelectric constants.

In the present paper, we developed a new noniterative method
to determine the complex material constants. It only uses two
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formulas and a system of two equations to calculate the complex
material constants. The accuracy of the new method was deter-
mined for materials with different planar coupling coefficients
(kp =2.5-57%) and mechanical quality factors (Q,, = 20-3000).

2. Measurements

The measurement technique consists in generating a radial
mode of vibration in a disc shaped piezoceramic resonator, by
sinusoidal electrical stimulation and frequency sweep, by means
of an HP-4294A impedance analyzer, controlled by a computer.

The real (conductance G) and imaginary (susceptance B)
parts of the complex electrical admittance Y are measured as
a function of frequency within the resonance band of the funda-
mental radial mode and these data are stored as input resonance
spectra, in order to check only the agreement with output data
calculated with the constants provided by this method.

The series resonance frequency f; corresponding to the max-
imum of G and the frequencies fpmax and fpmin of maximum
and minimum of B around f;, respectively, are determined from
these spectra and stored. Electrical admittance, is also measured
at two frequencies fi;s and fosis, outside the resonance band and
the corresponding values Y4 and Yoy are stored. The criteria
used to select these frequencies will be further discussed. Then,
the frequency range is changed to sweep the first overtone band
of the radial mode, in order to determine its series resonance
frequency f;1.

3. Description of the method

This new method is based on the following expression for
the electrical admittance Y, of a disk resonator oscillating in the
radial mode under a sinusoidal signal, as a function of frequency
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The symbols a, ¢ and p represent the radius, thickness and
density of the sample, respectively and i = /—1. The dielec-
tric permittivity at constant stress 53T3, the piezoelectric constant
dz1, and the elastic compliance at constant electric field sﬁ , are
complex parameters. The Poisson’s ratio o is defined as the ratio
of the elastic compliances s¥; and s%, and is considered as a real
parameter.
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The complex function jj (z) of complex variable z is given by:
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Jo and J; are Bessel functions of first kind and zeroth and first
order, respectively. The argument z of the function j;(z) is given
by:

z = 2naf\/ pst (1 — 0?) )
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The relationship (1) is derived from Eq. (117) of the IEEE
Std.,! by substituting the planar coupling factor kp with the fol-
lowing formula, in order to evidence the explicit contributions
of the dielectric, piezoelectric and elastic constants:

kp = A )
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First, one has to determine two parameters: the Poisson’s ratio
o and n which is the first positive root of the equation:

ji@)+o—-1=0 (6)

representing the condition of radial resonance in a lossless piezo-
ceramic resonator with all material constants as real quantities,
including the function ji(z). These parameters were calculated
by a polynomial fit> of the data given in Table 12 of IEEE Std.':
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with a; and b; given by Table I of Ref. 5 and r=f§/f;.
The real part of sﬁ was calculated according to standard
method by the relationship!:
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and the imaginary part with:
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where Af=jgmin — fBmax-

By substituting the above calculated constants, the admit-
tance values Ys and Yoy with their corresponding frequencies
fisis and fogis into Eq. (1), a system of two equations linear with
respect to the constants 83T3 and d321 was obtained. By solving
it, 83T3 and d;; were determined. The frequencies fj 25, used
to calculate the dielectric and piezoelectric constants are sym-
metrically situated outside the resonance—antiresonance band
(f1sis <fm <fn <f2sis), Where f,, and f; are the frequencies cor-
responding to maximum and minimum of absolute admittance,
respectively, in the fundamental resonance band of the radial
mode. The frequencies fj 24 should be chosen such the abso-
lute impedance/admittance has about the same values at these
frequencies. For materials with very low &, and Q,, the differ-
ence between them (f25is — fisis) 1S recommended to be about
ten times the difference (f;, — f,,), since otherwise they would
be to close to f;;, and f;, where the accuracy of the dielectric
constant would be decreased. At series resonance, which cor-
responds to mechanical resonance of the disk, a large amount
of input energy is converted to elastic energy, thus allowing an
accurate determination of the elastic constant around f, to the
detriment of dielectric constant. Therefore, it is necessary to
determine the dielectric constant far from f;, where the dielec-
tric energy becomes dominant. This is the reason of choosing the
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frequencies f1 24is, near but outside the resonance—antiresonance
band.

The algorithm of this method was written in Mathematica
3.0.

4. Results and discussion

The new method was tested on materials with different planar
coupling factors (k, =2.5-57%) and mechanical quality fac-
tors (Q,, =20-3000). Their experimental resonance spectra were
simulated by giving complex values to material constants 83T3,
ds1, s and o, considered as input constants into Eq. (1). The
new method was then applied to the generated admittance data
in order to check the agreement between calculated and input
material constants.

The errors for the real and imaginary parts of material con-
stants were calculated by the following relationships:

|const] — const,|

Econst! = 7 (11)
!consg|
and
|const]! — const]!
Econst” = (12)
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where subscripts “i” and “c”” designate the input and calculated
constants, respectively and single and double primes signify the
real and imaginary parts, respectively.

Table 1 shows the input constants for eleven materials and
their input &, and O, calculated with input constants by formula
(5) and the following one, respectively:

(lel )/
(SlEl )//

In order to evaluate the accuracy of our method, it is required
to check for the agreement between experimental and calculated
resonance profiles, but also to determine the errors of all material
constants provided by the method.

In this regard, Table 2 shows the errors of the four material
constants, of the radial mode, determined by the new method,
for investigated materials. It also shows the errors of other mate-
rial constants related to them: the coupling factors k, and k31,
the piezoelectric constant g3; and the elastic compliances lel

Om = (13)

and sfz‘D at constant E (electric field) and constant D (dielec-
tric displacement), which were subsequently calculated by the
previous constants.

Table 2 proves that our new method is very accurate for
materials 1-3 with large coupling factors (the errors for mate-
rial constants are below 0.1%). For materials 4-7 with low &,
and Qy,, the errors were lower then 0.5% and 2% for the real
and imaginary parts of material constants, respectively. Similar
results were obtained for materials 10 and 11 with very low k,
and high Qy,. For materials 8 and 9 with very low k, and O,
errors less then 1-3% were obtained for the real parts of the
constants and large errors up to 60% for their imaginary parts.
However, by substituting Afin formula (10) with Afpp, (the half
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Fig. 1. Generated and calculated G and B versus frequency around the series
resonance of the radial mode of material 1.

band width of the conductance spectrum around series reso-
nance), the errors of the imaginary parts significantly decreased
to 1-3%, except for d31, for which they reduced to 5-20%. Same
errors resulted, for these two materials, by fitting approach of
the experimental data with formula (1) in the same conditions
((sﬁ)” calculated with Afj;,). For the rest of the constants, indi-
rectly determined by this method, similar errors were obtained.
For material 11, with very high Q,,, larger errors of 7% resulted
for the imaginary parts of the coupling factors, since they are
more than three orders of magnitude lower than the real parts
and therefore can be ignored.

Figs. 1-4 show the real and imaginary parts of the generated
and calculated admittance data versus frequency, in the series
resonance band of the fundamental radial mode, for materials 1,
6, 8 and 11, representing the four groups of materials mentioned
in Table 2. The resonance spectra were generated for disc shaped
resonators of 20 mm in diameter and 1 mm thickness.

One can see the very good agreement between the gener-
ated and calculated admittance spectra, for all materials except
for material 8 with (s¥,)" calculated with Af (Fig. 3a). In this
case the mismatch between input and output spectra is the result
of large errors of the imaginary parts of the material constants
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Fig. 2. Generated and calculated G and B versus frequency around the series
resonance of the radial mode of material 6.
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Table 1

Input constants of materials 1-11.
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Materials Input constants
el /g0 d31 (10712 C/N) sE (10712 m?/N) o ky Onm fil Af p (kg/m?)

1. k,=0.56 1200 —il7 —130+i3 15 —i0.17 0.32 0.56 — i0.0058 88 88 7600
Om= 90

2. k,=0.60 1400 — i3 —138+i0.3 12.7 —i0.02 0.30 0.59 —i0.0002 635 635 7600
Om= 600

3.k, =0.57 1100 —i2.7 —120+i0.2 13 -i0.011 0.31 0.57 —i9 x 1076 1182 1182 7600

= 1200

4. k,=0.10 800 —il5 —20.1+i1.8 14 —i0.28 0.32 0.10 —i0.0077 50 51 7550
0n=50

5.k,=0.18 915—i6.3 —32.1+i2.3 12 —i0.35 0.35 0.18 —i0.0097 34 35 7550
On =34

6. k,=0.21 900 —i16 —40.1+i2.3 14 —i0.35 0.35 0.21 —i0.0076 40 40 7550
On=40

7. ky=0.22 800 —i12 —40.1+i2.3 14 —i0.28 0.35 0.22 —i0.0089 50 50 7550
On=350

8.k, =0.033 420 —il10 —4.6+i0.02 15 —i0.5 0.33 0.033 +i0.0008 30 74 4650
0n=30

9. k,=0.097 240 —il.5 —12.7+i0.1 20—il.1 0.2 0.097 +i0.0022 18 25 5700
On=18

10. k, =0.028 140 —i2 —2.2+i0.011 12.9 —i0.0322 0.21 0.028+i9 x 107> 400 395 7500
0, =400

11. k, =0.025 168 —i0.5 —1.72 +i0.002 8 —i0.00287 0.25 0.026+i107> 2787 2825 7200
0, =2800

previously discussed. The frequency bands Af and Afyy, are
significantly narrower (which means lower mechanical losses)
for calculated than for generated spectra. When (sﬁ)” is cal-
culated with Afyy, the errors decrease resulting in a very good
agreement between generated and calculated spectra, shown in

For materials 8 and 9, with high losses, (s{E1 )" as well as
the imaginary parts of other elastic constants, is given with
large errors, because of the large difference, of about 40-140%,
between input Oy, and the ratio f;/Af, as can be seen in Table 1.
For the rest of materials, the difference between the two quan-

Fig. 3b. tities is less than 3%. Sherit et al.> explained this by giving a
Table 2
The errors of complex material constants determined by the noniterative method.
Constant Errors (%)
Materials with Materials with Materials with Materials with
k,>0.5 and 0.1<k,<0.25 k, <0.1 and kp<0.1 and
On=90 and 0, <50 Om <30% O =400
% /&0 Real 0.02 0.06 0.01 0.01
Imag. 0.05 0.6 5-28 (1) 0.1
d3) Real 0.005 0.3 1-3.5 (0.05) 0.15
Imag. 0.025 0.3-1 16-40(5-20) 0.5-3
sk Real 0.02 0.2 0.3 0.002
Imag. 0.01 2 30-60(1) 1.5
o Real 0.01 0.006 0.6 0.08
Imag.
kp Real 0.004 0.3 3.4(0.03) 0.15
Imag. 0.8 0.3-2 30(3) 0.1-7
sk Real 0.03 0.2 0.9 0.08
Imag. 0.02 0.5-2.5 30-60(1) 1.5
s Real 0.02 0.2 0.3 0.002
Imag. 0.02 0.6-2.5 30-60(1) 1.5
sB Real 0.03 0.2 1 0.08
Imag. 0.02 0.5-2 30-60(1) 1.5
k31 Real 0.004 0.3 3(0.2) 0.1
Imag. 1 0.4-2 30(3) 0.1-7
831 Real 0.02 0.4 3(0.1) 0.1
Imag. 0.5 0.5-2 10-100(5-20) 0.2-2

2 The values in brackets correspond to (le1 )’ calculated with Afyp,
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Fig. 3. Generated and calculated G and B versus frequency around the series

resonance of the radial mode of material 8 with (s{iI )" calculated with (a) Af

and (b) Afpp.-

new definition of these frequencies. They defined f5, fpmax and
JBmin as the frequencies corresponding to extrema of G(f)/f and
B(Hlf, respectively. The difference between the two definitions
is only significant for materials with very low Q,,. According to
Sherrit definition, Q,, and the ratio f;/ Af are almost identical, for
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Fig. 4. Generated and calculated G and B versus frequency around the series
resonance of the radial mode of material 11.

materials 8 and 9. Moreover, this means that the frequency band
width (fBmin —fBmax), given by Sherrit definition, corresponds
to Afyp of conductance G, given by the usual definition.

Following the above discussion and taking into account that
experimental admittance is measured with errors of about 1%,
one may conclude that this method is very accurate provided a
good estimation of (s£)” is achieved.

The accuracy of standard method used to determine the loss-
less material constants of the radial mode was also investigated
and the errors, calculated with respect to the real parts of input
constants, are given in Table 3. Standard method is based on
the measurement of the characteristic frequencies f;, f, (corre-
sponding to maximum of resistance R) of the fundamental mode
and f;1 of the first overtone. Constants o, sﬁ » Omsr and kpg were
directly calculated with these frequencies, by formulas (7) and
(9) and the following ones, respectively:

kA
Ons = 35 (14)

Jin- fp/fs) +o—1
jl(n'fp/fs)_z

kpst = (15)

The other constants were calculated with the previous ones.

Table 3 shows that standard method is very accurate, with
errors less then 1%, for all materials, except for those with
very low k, and Q,, (k,<0.1 and Oy, < 30). For such mate-
rials, errors of 12-18% resulted for the radial and transversal
coupling factors and very large errors of 40-140% for Q,,
but they were drastically reduced to 0.1%, by determining Qs
with Afp,. As it was already mentioned, constants sﬁ and
o determined with high accuracy by standard method were
used as the real parts of these constants in our method, that
provides materials constants in complex form. The dielectric
constant £3T3 /€0 and the piezoelectric constants d3; and g3
are not included in Table 3, since following standard method,
the dielectric constant is determined by measuring the capac-
itance at low frequencies, far from the radial resonance band,
where the admittance spectra (1) are no longer valid, and
the piezoelectric constants are calculated with the dielectric
constant.

The accuracy of standard method is very useful to be known
in order to compare complex constants provided by other meth-
ods with those obtained by standard method, since it is not
enough to evaluate whether the results are reliable or not, by only
checking for the agreement between calculated and experimental
spectra.

For example, in Tables 1 and 2 of Ref. 6, complex material
constants determined by nonlinear fitting curve approach were
compared with those calculated by standard method for two PZT
materials with high k,, (0.56 and 0.5) and medium Q,, (700 and
100). Large differences between the constants provided by the
two methods were obtained: 14-300% for k,, 5-16% for Oy,
0.2-9% for (s,)’, and 40-500% for (s,)", despite the concor-
dance of calculated with experimental resonance profiles. As it
is shown in Table 3, the accuracy of standard method is very
good for materials with high coupling factors, by consequence
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Table 3
The errors of material constants determined by standard method.

Materials Errors (%)

QmstZl SIEI o kpst S|E2 Sf)l Sf)z k31
kp>0.5 and O, > 90 0.01 0.02 0.01 0.01 0.03 0.02 0.04 0.01
0.1<k,<0.25 and Q,, <50 3 0.2 0.006 0.8 0.2 0.2 0.2 0.8
kp<0.1 and Oy, <30 40-140 (0.1) 0.3 0.6 18 0.9 0.3 0.9 18
kp<0.1 and Q, > 400 1.5 0.002 0.08 12 0.08 0.009 0.05 12

2 The values in brackets correspond to O, calculated with Afj,

the large differences, beyond the limit of experimental errors, Acknowledgement

between the results of these methods imply a possible lower
accuracy of the fitting method for materials with large coupling
factors.

5. Conclusions

A new noniterative method, for determining the dielectric,
piezoelectric and elastic constants, in complex form, for piezo-
ceramic materials, in the radial mode, was proposed.

The method is very simple and could be easily applied, since it
is based on the standard procedure to determine the elastic com-
pliance and Poisson factor and the measurement of admittance
at two frequencies to calculate the dielectric and piezoelectric
constants, by solving a system of two equations.

The accuracy of the new method was determined for materials
with different planar coupling factors and mechanical quality
factors. This method proved to be very accurate and reliable for
all materials especially for those with large coupling factors.
The accuracy of standard method was also evaluated for the
same materials.
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