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bstract

 new noniterative method, for determining the dielectric, piezoelectric and elastic constants, in complex form, for piezoceramic materials, in the
adial mode, was proposed.

This method uses the standard procedure to determine the elastic compliance and Poisson factor and the measurement of admittance at two
requencies to calculate the dielectric and piezoelectric constants, by solving a system of two equations.
The accuracy of the new method was determined for materials with different planar coupling coefficients (kp = 2.5–57%) and mechanical quality
actors (Qm = 20–3000). This method proved to be very accurate for all materials especially for those with large coupling factors. The accuracy of
tandard method was also evaluated for the same materials.

 2011 Elsevier Ltd. All rights reserved.
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.  Introduction

The standard method1 used to determine the dielectric, piezo-
lectric and elastic constants of piezoelectric ceramics, in the
adial mode, ignores their losses, considering these constants as
eal quantities. However, the development of impedance spec-
roscopy performed with impedance analyzers, provides the
pectra of the real and imaginary parts of electrical admittance,
hich can only be explained by taking into account the losses and

reating the material constants as complex quantities. The meth-
ds used to determine material constants, in complex form, can
e classified as iterative2–4 and noniterative.5 The iterative ones
se the frequency spectra of the electrical admittance, within the
ange of the resonance–antiresonance of the fundamental mode
nly, to determine all material constants, while the noniterative
ethod requires some more measurements, away from funda-
ental resonance, and a set of specific frequencies, in the range
f fundamental mode and the first overtone. For radial mode, the
oniterative method is valid only for materials with intermedi-
te mechanical quality factors.5 Iterative methods can be used
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ven for materials with high losses, but they need a judicious
hoice of the frequencies where admittance is measured. These
requencies have to be calculated before2,4 or during the iteration
rocess3 which is a drawback of these methods. In this later case,
easurement of new admittance data at calculated frequencies is

equired, hence data acquisition and iteration process cannot be
eparated. Despite their high accuracy,4 iterative methods have
nother drawback. They require the measurement of the admit-
ance at series resonance frequency, which is performed with
arge errors for the imaginary part, mostly for materials with
igh coupling factors.

Recently, a new method for determining material constants in
omplex form by curve fitting approach has been reported.6 The
tting approach of the whole admittance spectra was performed
y a nonlinear iteration method, in the series resonance band,
nd the resulting constants were compared to those provided
y standard method. A significant mismatch between the two
ethods was observed for materials with high coupling factors.
his method is rather difficult to be applied since it uses some
omplicated expressions for linearization of the admittance and

or solving the systems of equations for the initial guess of the
ielectric and piezoelectric constants.

In the present paper, we developed a new noniterative method
o determine the complex material constants. It only uses two
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ormulas and a system of two equations to calculate the complex
aterial constants. The accuracy of the new method was deter-
ined for materials with different planar coupling coefficients

kp = 2.5–57%) and mechanical quality factors (Qm = 20–3000).

. Measurements

The measurement technique consists in generating a radial
ode of vibration in a disc shaped piezoceramic resonator, by

inusoidal electrical stimulation and frequency sweep, by means
f an HP-4294A impedance analyzer, controlled by a computer.

The real (conductance G) and imaginary (susceptance B)
arts of the complex electrical admittance Y  are measured as

 function of frequency within the resonance band of the funda-
ental radial mode and these data are stored as input resonance

pectra, in order to check only the agreement with output data
alculated with the constants provided by this method.

The series resonance frequency fs corresponding to the max-
mum of G  and the frequencies fBmax and fBmin of maximum
nd minimum of B  around fs, respectively, are determined from
hese spectra and stored. Electrical admittance, is also measured
t two frequencies f1sis and f2sis, outside the resonance band and
he corresponding values Y1sis and Y2sis are stored. The criteria
sed to select these frequencies will be further discussed. Then,
he frequency range is changed to sweep the first overtone band
f the radial mode, in order to determine its series resonance
requency fs1.

. Description  of  the  method

This new method is based on the following expression for
he electrical admittance Y, of a disk resonator oscillating in the
adial mode under a sinusoidal signal, as a function of frequency
:

 =  i
2π2fa2

t

[
εT

33 + 2d2
31

sE11(1 −  σ)
× 2 −  j1(z)

j1(z) +  σ  −  1

]
(1)

The symbols a, t and ρ  represent the radius, thickness and
ensity of the sample, respectively and i  = √−1. The dielec-
ric permittivity at constant stress εT

33, the piezoelectric constant
31, and the elastic compliance at constant electric field sE11, are
omplex parameters. The Poisson’s ratio σ  is defined as the ratio
f the elastic compliances sE11 and sE12 and is considered as a real
arameter.

 =  − sE12

sE11
(2)

The complex function j1(z) of complex variable z  is given by:

1(z) = zJ0(z)

J1(z)
(3)

0 and J1 are Bessel functions of first kind and zeroth and first
rder, respectively. The argument z  of the function j1(z) is given

y:

 =  2πaf

√
ρsE11(1 −  σ2) (4)

a
d
d
t

ramic Society 32 (2012) 1099–1104

The relationship (1) is derived from Eq. (117) of the IEEE
td.,1 by substituting the planar coupling factor kp with the fol-

owing formula, in order to evidence the explicit contributions
f the dielectric, piezoelectric and elastic constants:

p =
√

2d31√
εT

33(sE11 +  sE12)
(5)

First, one has to determine two parameters: the Poisson’s ratio
 and η  which is the first positive root of the equation:

1(z) +  σ  −  1 =  0 (6)

epresenting the condition of radial resonance in a lossless piezo-
eramic resonator with all material constants as real quantities,
ncluding the function j1(z). These parameters were calculated
y a polynomial fit5 of the data given in Table 12 of IEEE Std.1:

 =
4∑

i=0

air
i (7)

 =
3∑

i=0

bir
i (8)

ith ai and bi given by Table I of Ref. 5 and r  = fs1/fs.
The real part of sE11 was calculated according to standard

ethod by the relationship1:

sE11)′ = η2

ρ(2πafs)2(1 −  σ2)
(9)

nd the imaginary part with:

sE11)′′ =  −�f

fs

(sE11)′ (10)

here �f  = fBmin − fBmax.
By substituting the above calculated constants, the admit-

ance values Y1sis and Y2sis with their corresponding frequencies
1sis and f2sis into Eq. (1), a system of two equations linear with
espect to the constants εT

33 and d2
31 was obtained. By solving

t, εT
33 and d31 were determined. The frequencies f1,2sis, used

o calculate the dielectric and piezoelectric constants are sym-
etrically situated outside the resonance–antiresonance band

f1sis < fm < fn < f2sis), where fm and fn are the frequencies cor-
esponding to maximum and minimum of absolute admittance,
espectively, in the fundamental resonance band of the radial
ode. The frequencies f1,2sis should be chosen such the abso-

ute impedance/admittance has about the same values at these
requencies. For materials with very low kp and Qm, the differ-
nce between them (f2sis −  f1sis) is recommended to be about
en times the difference (fn −  fm), since otherwise they would
e to close to fm and fn, where the accuracy of the dielectric
onstant would be decreased. At series resonance, which cor-
esponds to mechanical resonance of the disk, a large amount
f input energy is converted to elastic energy, thus allowing an

ccurate determination of the elastic constant around fs, to the
etriment of dielectric constant. Therefore, it is necessary to
etermine the dielectric constant far from fs, where the dielec-
ric energy becomes dominant. This is the reason of choosing the
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for material 8 with (sE11)′′ calculated with �f  (Fig. 3a). In this
case the mismatch between input and output spectra is the result
of large errors of the imaginary parts of the material constants
L. Amarande / Journal of the Europe

requencies f1,2sis, near but outside the resonance–antiresonance
and.

The algorithm of this method was written in Mathematica
.0.

. Results  and  discussion

The new method was tested on materials with different planar
oupling factors (kp = 2.5–57%) and mechanical quality fac-
ors (Qm = 20–3000). Their experimental resonance spectra were
imulated by giving complex values to material constants εT

33,
31, sE11 and σ, considered as input constants into Eq. (1). The
ew method was then applied to the generated admittance data
n order to check the agreement between calculated and input

aterial constants.
The errors for the real and imaginary parts of material con-

tants were calculated by the following relationships:

const′ =
∣∣const′i −  const′c

∣∣∣∣const′i
∣∣ (11)

nd

const′′ =
∣∣const′′i −  const′′c

∣∣∣∣const′′i
∣∣ (12)

here subscripts “i” and “c” designate the input and calculated
onstants, respectively and single and double primes signify the
eal and imaginary parts, respectively.

Table 1 shows the input constants for eleven materials and
heir input kp and Qm calculated with input constants by formula
5) and the following one, respectively:

m =
∣∣∣∣ (sE11)′

(sE11)′′

∣∣∣∣ (13)

In order to evaluate the accuracy of our method, it is required
o check for the agreement between experimental and calculated
esonance profiles, but also to determine the errors of all material
onstants provided by the method.

In this regard, Table 2 shows the errors of the four material
onstants, of the radial mode, determined by the new method,
or investigated materials. It also shows the errors of other mate-
ial constants related to them: the coupling factors kp and k31,
he piezoelectric constant g31 and the elastic compliances sD11

nd s
E,D
12 at constant E  (electric field) and constant D  (dielec-

ric displacement), which were subsequently calculated by the
revious constants.

Table 2 proves that our new method is very accurate for
aterials 1–3 with large coupling factors (the errors for mate-

ial constants are below 0.1%). For materials 4–7 with low kp

nd Qm, the errors were lower then 0.5% and 2% for the real
nd imaginary parts of material constants, respectively. Similar
esults were obtained for materials 10 and 11 with very low kp
nd high Qm. For materials 8 and 9 with very low kp and Qm

rrors less then 1–3% were obtained for the real parts of the
onstants and large errors up to 60% for their imaginary parts.
owever, by substituting �f  in formula (10) with �fhb (the half

F
r

ig. 1. Generated and calculated G and B versus frequency around the series
esonance of the radial mode of material 1.

and width of the conductance spectrum around series reso-
ance), the errors of the imaginary parts significantly decreased
o 1–3%, except for d31, for which they reduced to 5–20%. Same
rrors resulted, for these two materials, by fitting approach of
he experimental data with formula (1) in the same conditions
(sE11)′′ calculated with �fhb). For the rest of the constants, indi-
ectly determined by this method, similar errors were obtained.
or material 11, with very high Qm, larger errors of 7% resulted
or the imaginary parts of the coupling factors, since they are
ore than three orders of magnitude lower than the real parts

nd therefore can be ignored.
Figs. 1–4 show the real and imaginary parts of the generated

nd calculated admittance data versus frequency, in the series
esonance band of the fundamental radial mode, for materials 1,
, 8 and 11, representing the four groups of materials mentioned
n Table 2. The resonance spectra were generated for disc shaped
esonators of 20 mm in diameter and 1 mm thickness.

One can see the very good agreement between the gener-
ted and calculated admittance spectra, for all materials except
ig. 2. Generated and calculated G and B versus frequency around the series
esonance of the radial mode of material 6.
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Table 1
Input constants of materials 1–11.

Materials Input constants

εT
33/ε0 d31 (10−12 C/N) sE11 (10−12 m2/N) σ kp Qm fs/�f  ρ (kg/m3)

1. kp = 0.56
Qm = 90

1200 − i17 −130 + i3 15 − i0.17 0.32 0.56 − i0.0058 88 88 7600

2. kp = 0.60
Qm = 600

1400 − i3 −138 + i0.3 12.7 − i0.02 0.30 0.59 − i0.0002 635 635 7600

3. kp = 0.57
Qm = 1200

1100 − i2.7 −120 + i0.2 13 − i0.011 0.31 0.57 − i9 × 10−6 1182 1182 7600

4. kp = 0.10
Qm = 50

800 − i15 −20.1 + i1.8 14 − i0.28 0.32 0.10 − i0.0077 50 51 7550

5. kp = 0.18
Qm = 34

915 − i6.3 −32.1 + i2.3 12 − i0.35 0.35 0.18 − i0.0097 34 35 7550

6. kp = 0.21
Qm = 40

900 − i16 −40.1 + i2.3 14 − i0.35 0.35 0.21 − i0.0076 40 40 7550

7. kp = 0.22
Qm = 50

800 − i12 −40.1 + i2.3 14 − i0.28 0.35 0.22 − i0.0089 50 50 7550

8. kp = 0.033
Qm = 30

420 − i10 −4.6 + i0.02 15 − i0.5 0.33 0.033 + i0.0008 30 74 4650

9. kp = 0.097
Qm = 18

240 − i1.5 −12.7 + i0.1 20 − i1.1 0.2 0.097 + i0.0022 18 25 5700

10. kp = 0.028
Qm = 400

140 − i2 −2.2 + i0.011 12.9 − i0.0322 0.21 0.028 + i9 × 10−5 400 395 7500

1 287 

−5

p
s
f
c
a
F

t
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ε
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s
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k

s

s

s

k

g

1. kp = 0.025
Qm = 2800

168 − i0.5 −1.72 + i0.002 8 − i0.00

reviously discussed. The frequency bands �f  and �fhb are
ignificantly narrower (which means lower mechanical losses)
or calculated than for generated spectra. When (sE )′′ is cal-
11
ulated with �fhb, the errors decrease resulting in a very good
greement between generated and calculated spectra, shown in
ig. 3b.

b
F
t

able 2
he errors of complex material constants determined by the noniterative method.

onstant Errors (%)

Materials with
kp > 0.5 and
Qm ≥ 90

M
0.
an

T
33/ε0 Real 0.02 0.

Imag. 0.05 0.

31 Real 0.005 0.
Imag. 0.025 0.

E
11 Real 0.02 0.

Imag. 0.01 2 

 Real 0.01 0.
Imag.

p Real 0.004 0.
Imag. 0.8 0.

E
12 Real 0.03 0.

Imag. 0.02 0.
D
11 Real 0.02 0.

Imag. 0.02 0.
D
12 Real 0.03 0.

Imag. 0.02 0.

31 Real 0.004 0.
Imag. 1 0.

31 Real 0.02 0.
Imag. 0.5 0.

a The values in brackets correspond to (sE11)′′ calculated with �fhb.
0.25 0.026 + i10 2787 2825 7200

For materials 8 and 9, with high losses, (sE11)′′ as well as
he imaginary parts of other elastic constants, is given with
arge errors, because of the large difference, of about 40–140%,

etween input Qm and the ratio fs/�f, as can be seen in Table 1.
or the rest of materials, the difference between the two quan-

ities is less than 3%. Sherit et al.5 explained this by giving a

aterials with
1 < kp < 0.25
d Qm ≤ 50

Materials with
kp < 0.1 and
Qm ≤ 30a

Materials with
kp < 0.1 and
Qm ≥ 400

06 0.01 0.01
6 5–28 (1) 0.1
3 1–3.5 (0.05) 0.15
3–1 16–40(5–20) 0.5–3
2 0.3 0.002

30–60(1) 1.5
006 0.6 0.08

3 3.4(0.03) 0.15
3–2 30(3) 0.1–7
2 0.9 0.08
5–2.5 30–60(1) 1.5
2 0.3 0.002
6–2.5 30–60(1) 1.5
2 1 0.08
5–2 30–60(1) 1.5
3 3(0.2) 0.1
4–2 30(3) 0.1–7
4 3(0.1) 0.1
5–2 10–100(5–20) 0.2–2
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Fig. 3. Generated and calculated G and B versus frequency around the series
resonance of the radial mode of material 8 with (sE )′′ calculated with (a) �f
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ew definition of these frequencies. They defined fs, fBmax and
Bmin as the frequencies corresponding to extrema of G(f)/f  and

(f)/f, respectively. The difference between the two definitions

s only significant for materials with very low Qm. According to
herrit definition, Qm and the ratio fs/�f  are almost identical, for

ig. 4. Generated and calculated G and B versus frequency around the series
esonance of the radial mode of material 11.
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aterials 8 and 9. Moreover, this means that the frequency band
idth (fBmin − fBmax), given by Sherrit definition, corresponds

o �fhb of conductance G, given by the usual definition.
Following the above discussion and taking into account that

xperimental admittance is measured with errors of about 1%,
ne may conclude that this method is very accurate provided a
ood estimation of (sE11)′′ is achieved.

The accuracy of standard method used to determine the loss-
ess material constants of the radial mode was also investigated
nd the errors, calculated with respect to the real parts of input
onstants, are given in Table 3. Standard method is based on
he measurement of the characteristic frequencies fs, fp (corre-
ponding to maximum of resistance R) of the fundamental mode
nd fs1 of the first overtone. Constants σ, sE11, Qmst and kpst were
irectly calculated with these frequencies, by formulas (7) and
9) and the following ones, respectively:

mst = fs

�f
(14)

pst =
√

j1(η  · fp/fs) +  σ  −  1

j1(η  ·  fp/fs) −  2
(15)

The other constants were calculated with the previous ones.
Table 3 shows that standard method is very accurate, with

rrors less then 1%, for all materials, except for those with
ery low kp and Qm (kp < 0.1 and Qm ≤  30). For such mate-
ials, errors of 12–18% resulted for the radial and transversal
oupling factors and very large errors of 40–140% for Qmst,
ut they were drastically reduced to 0.1%, by determining Qmst

ith �fhb. As it was already mentioned, constants sE11 and
 determined with high accuracy by standard method were
sed as the real parts of these constants in our method, that
rovides materials constants in complex form. The dielectric
onstant εT

33/ε0 and the piezoelectric constants d31 and g31
re not included in Table 3, since following standard method,
he dielectric constant is determined by measuring the capac-
tance at low frequencies, far from the radial resonance band,
here the admittance spectra (1) are no longer valid, and

he piezoelectric constants are calculated with the dielectric
onstant.

The accuracy of standard method is very useful to be known
n order to compare complex constants provided by other meth-
ds with those obtained by standard method, since it is not
nough to evaluate whether the results are reliable or not, by only
hecking for the agreement between calculated and experimental
pectra.

For example, in Tables 1 and 2 of Ref. 6, complex material
onstants determined by nonlinear fitting curve approach were
ompared with those calculated by standard method for two PZT
aterials with high kp (0.56 and 0.5) and medium Qm (700 and

00). Large differences between the constants provided by the
wo methods were obtained: 14–300% for kp, 5–16% for Qm,

E ′ E ′′
.2–9% for (s11) , and 40–500% for (s11) , despite the concor-
ance of calculated with experimental resonance profiles. As it
s shown in Table 3, the accuracy of standard method is very
ood for materials with high coupling factors, by consequence
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Table 3
The errors of material constants determined by standard method.

Materials Errors (%)

Qmst
a sE11 σ kpst sE12 sD11 sD12 k31

kp > 0.5 and Qm ≥ 90 0.01 0.02 0.01 0.01 0.03 0.02 0.04 0.01
0.1 < kp < 0.25 and Qm ≤ 50 3 0.2 0.006 0.8 0.2 0.2 0.2 0.8
kp < 0.1 and Qm ≤ 30 40–140 (0.1) 0.3 0.6 18 0.9 0.3 0.9 18
k .08 

t
b
a
f

5

p
c

i
p
a
c

w
f
a
T
s

A

f
4

R

1
2

3

4

5

p < 0.1 and Qm ≥ 400 1.5 0.002 0

a The values in brackets correspond to Qmst calculated with �fhb.

he large differences, beyond the limit of experimental errors,
etween the results of these methods imply a possible lower
ccuracy of the fitting method for materials with large coupling
actors.

. Conclusions

A new noniterative method, for determining the dielectric,
iezoelectric and elastic constants, in complex form, for piezo-
eramic materials, in the radial mode, was proposed.

The method is very simple and could be easily applied, since it
s based on the standard procedure to determine the elastic com-
liance and Poisson factor and the measurement of admittance
t two frequencies to calculate the dielectric and piezoelectric
onstants, by solving a system of two equations.

The accuracy of the new method was determined for materials
ith different planar coupling factors and mechanical quality
actors. This method proved to be very accurate and reliable for
ll materials especially for those with large coupling factors.
he accuracy of standard method was also evaluated for the
ame materials.
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